Glucuronidation of propofol and its analogs by human and rat liver microsomes.

نویسندگان

  • Makiko Shimizu
  • Yoshiaki Matsumoto
  • Masahiro Tatsuno
  • Masamichi Fukuoka
چکیده

Propofol (2,6-diisopropylphenol), widely used an intravenous anesthetic, is rapidly metabolized to its glucuronide in the in vivo studies. Kinetic parameters for the glucuronidation of propofol and its analogs, such as 2,5-diisopropylphenol, 2-tert-butyl-6-methylphenol, 2-tert-butyl-5-methylphenol, 2,6-dimethylphenol and 2,5-dimethylphenol, were determined in vitro using human and rat liver microsomes. 2,5-Dimethylphenol and 2-tert-butyl-6-methylphenol exhibited the highest and lowest glucuronidation rates, respectively. Substitutes at the 2,6-positions gave lower glucuronidation rates than those at the 2,5-positions in both the human and rat microsomes. 2,5-Diisopropylphenol was glucuronidated at a lower rate in human than propofol. The affinity of uridine 5'-diphosphate (UDP)-glucuronosyltransferase for disubstituted phenols, such as propofol, 2,5-diisopropylphenol, 2,5-dimethylphenol, and 2-tert-butyl-6-methylphenol, gave higher Km values in human liver microsomes than in rat ones, and lower Vmax values showed similar relationship, expect for Vmax in propofol. The alkyl group at the 6 position showed a higher Km for glucuronidation by a steric hindrance in the human and rat microsomes. Our results propose that the glucuronidation of propofol and its analogs may not be explained by only a steric hindrance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of human UDP-glucuronosyltransferase isoform(s) responsible for the glucuronidation of 2-(4-chlorophenyl)- 5-(2-furyl)-4-oxazoleacetic acid (TA-1801A).

We characterized the hepatic and intestinal UDP-glucuronosyltransferase (UGT) isoform(s) responsible for the glucuronidation of 2-(4-chlorophenyl)-5-(2-furyl)-4-oxazoleacetic acid (TA-1801A) in humans through several in vitro mechanistic studies. Assessment of a panel of recombinant UGT isoforms revealed the TA-1801A glucuronosyltransferase activity of UGT1A1, UGT1A3, UGT1A7, UGT1A9, and UGT2B7...

متن کامل

Evaluation of 5-hydroxytryptophol and other endogenous serotonin (5-hydroxytryptamine) analogs as substrates for UDP-glucuronosyltransferase 1A6.

Serotonin is a specific in vitro substrate for human UDP-glucuronosyltransferase (UGT) 1A6. In this study, the contribution of UGT1A6 to the glucuronidation of endogenous structural analogs of serotonin, including 5-hydroxytryptophol, N-acetylserotonin, and 6-hydroxymelatonin, was evaluated using available recombinant human UGT isoforms, human liver microsomes, and liver microsomes from animals...

متن کامل

N-glucuronidation of nicotine and cotinine by human liver microsomes and heterologously expressed UDP-glucuronosyltransferases.

Nicotine is considered the major addictive agent in tobacco. Tobacco users extensively metabolize nicotine to cotinine. Both nicotine and cotinine undergo N-glucuronidation. Human liver microsomes have been shown to catalyze the formation of these N-glucuronides. However, which UDP-glucuronosyltransferases contribute to this catalysis has not been identified. To identify these enzymes, we initi...

متن کامل

Acyl glucuronidation of fluoroquinolone antibiotics by the UDP-glucuronosyltransferase 1A subfamily in human liver microsomes.

Acyl glucuronidation is an important metabolic pathway for fluoroquinolone antibiotics. However, it is unclear which human UDP-glucuronosyltransferase (UGT) enzymes are involved in the glucuronidation of the fluoroquinolones. The in vitro formation of levofloxacin (LVFX), grepafloxacin (GPFX), moxifloxacin (MFLX), and sitafloxacin (STFX) glucuronides was investigated in human liver microsomes a...

متن کامل

N-glucuronidation of perfluorooctanesulfonamide by human, rat, dog, and monkey liver microsomes and by expressed rat and human UDP-glucuronosyltransferases.

N-Alkylperfluorooctanesulfonamides have been used in a range of industrial and commercial applications. Perfluorooctanesulfonamide (FOSA) is a major metabolite of N-alkylperfluorooctanesulfonamides and has a long half-life in animals and in the environment and is biotransformed to FOSA N-glucuronide. The objective of this study was to identify and characterize the human and experimental animal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological & pharmaceutical bulletin

دوره 26 2  شماره 

صفحات  -

تاریخ انتشار 2003